GstInference Benchmarks
Make sure you also check GstInference's companion project: R2Inference |
GstInference |
---|
Introduction |
Getting started |
Supported architectures |
InceptionV1 InceptionV3 YoloV2 AlexNet |
Supported backends |
Caffe |
Metadata and Signals |
Overlay Elements |
Utils Elements |
Legacy pipelines |
Example pipelines |
Example applications |
Benchmarks |
Model Zoo |
Project Status |
Contact Us |
|
GstInference Benchmarks - Introduction
This wiki summarizes a series of benchmarks on different hardware platforms based on the run_benchmark.sh bash script that can be found in the official GstInference repository. The script is based on the following GStreamer pipeline:
#Script to run each model run_all_models(){ model_array=(inceptionv1 inceptionv2 inceptionv3 inceptionv4 tinyyolov2 tinyyolov3) model_upper_array=(InceptionV1 InceptionV2 InceptionV3 InceptionV4 TinyYoloV2 TinyYoloV3) input_array=(input input input input input/Placeholder inputs ) output_array=(InceptionV1/Logits/Predictions/Reshape_1 Softmax InceptionV3/Predictions/Reshape_1 InceptionV4/Logits/Predictions add_8 output_boxes ) mkdir -p logs/ rm -f logs/* for ((i=0;i<${#model_array[@]};++i)); do echo Perf ${model_array[i]} gst-launch-1.0 \ filesrc location=$VIDEO_PATH num-buffers=600 ! decodebin ! videoconvert ! \ perf print-arm-load=true name=inputperf ! tee name=t t. ! videoscale ! queue ! net.sink_model t. ! queue ! net.sink_bypass \ ${model_array[i]} backend=$BACKEND name=net backend::input-layer=${input_array[i]} backend::output-layer=${output_array[i]} \ model-location="${MODELS_PATH}${model_upper_array[i]}_${INTERNAL_PATH}/graph_${model_array[i]}${EXTENSION}" \ net.src_bypass ! perf print-arm-load=true name=outputperf ! videoconvert ! fakesink sync=false > logs/${model_array[i]}.log done }
Test benchmark video
The following video was used to perform the benchmark tests.
To download the video press right-click on the video and select 'Save video as' and save this on your computer.
x86
The Desktop PC had the following specifications:
- Intel(R) Core(TM) Core i7-7700HQ CPU @ 2.80GHz
- 12 GB RAM
- Linux 4.15.0-106-generic x86_64 (Ubuntu 16.04)
- GStreamer 1.8.3
FPS Measurements
CPU Load Measurements
Jetson AGX Xavier
The Jetson Xavier power modes used were 2 and 6 (more information: Supported Modes and Power Efficiency)
- View current power mode:
$ sudo /usr/sbin/nvpmodel -q
- Change current power mode:
sudo /usr/sbin/nvpmodel -m x
Where x is the power mode ID (e.g. 0, 1, 2, 3, 4, 5, 6).
FPS Measurements
CPU Load Measurements
Jetson TX2
FPS Measurements
CPU Load Measurements
Jetson Nano
FPS Measurements
CPU Load Measurements
Google Coral
The following benchmarks were performed on the Coral Dev Board.
FPS Measurements
CPU Load Measurements