TI Jacinto 7 Edge AI Object Detection Demo using C++
Getting started with TI Jacinto 7 Edge AI RidgeRun documentation is currently under development. |
Getting started with TI Jacinto 7 Edge AI | ||||||
---|---|---|---|---|---|---|
| ||||||
Introduction | ||||||
|
||||||
GStreamer | ||||||
|
||||||
Demos | ||||||
|
||||||
Reference Documentation | ||||||
Contact Us |
Object detection demo
Requirements
- A connected USB camera to the Jacinto board.
Run the object detection demo example
- Navigate to the C++ apps directory:
cd /opt/edge_ai_apps/apps_cpp
- Create a directory to store the output files:
mkdir out
- Select the right camera device:
To select the camera device corresponding to the USC camera or CSI camera being used, run the following command:
ls -l /dev/v4l/by-path/
The above command will output something like the following:
lrwxrwxrwx 1 root root 12 Jun 1 19:28 platform-xhci-hcd.2.auto-usb-0:1.2:1.0-video-index0 -> ../../video0 lrwxrwxrwx 1 root root 12 Jun 1 19:28 platform-xhci-hcd.2.auto-usb-0:1.2:1.0-video-index1 -> ../../video1
In this case, a symbolic link to /dev/video0 is created for the USB camera driver (try both symbolic links if one does not work).
- Run the demo:
./bin/Release/app_object_detection --device /dev/video0 -m ../models/detection/TFL-OD-200-ssd-mobV1-coco-mlperf-300x300 -o ./out/detect_%d.jpg
- The demo will start running. The command line will look something like the following:
Figure 1. Terminal output.
- Since this is a continuous live feed from the camera, manually stop the pipeline by typing Ctrl+C in the command line after you are happy with the amount of frames taken.
- After the pipeline is stopped, navigate to the out directory:
cd out
There should be several images named detect_<number>.jpg as a result of the object detection model.
- Figure 2 shows an example of how these images should look like:
Figure 2. Object detection output example.
There are multiple input and output configurations available. In this example demo, a live video input and image output was specified.
For more information about configuration arguments please refer to the Configuration arguments section below.
Configuration arguments
-h, --help show this help message and exit -m MODEL, --model MODEL Path to model directory (Required) ex: ./image_classification.py --model ../models/classification/$(model_dir) -i INPUT, --input INPUT Source to gst pipeline camera or file ex: --input v4l2 - for camera --input ./images/img_%02d.jpg - for images printf style formating will be used to get file names --input ./video/in.avi - for video input default: v4l2 -o OUTPUT, --output OUTPUT Set gst pipeline output display or file ex: --output kmssink - for display --output ./output/out_%02d.jpg - for images --output ./output/out.avi - for video output default: kmssink -d DEVICE, --device DEVICE Device name for camera input default: /dev/video2 -c CONNECTOR, --connector CONNECTOR Connector id to select output display default: 39 -u INDEX, --index INDEX Start index for multiple file input output default: 0 -f FPS, --fps FPS Framerate of gstreamer pipeline for image input default: 1 for display and video output 12 for image output -n, --no-curses Disable curses report default: Disabled