NVIDIA Jetson Hacks
|
General hacks
Glass to glass latency: NVIDIA Jetson Glass to Glass Latency
Force recovery by software:
You will need a running image and be able to connect to the board:
sudo reboot --force forced-recovery
Create default user in the file system (Skip GUI setup in JetPack >= 4.2)
- Methods to bypass first boot account setting via GUI (>= 4.2):
#Possible required package sudo apt install qemu-user-static #Create a user and password in the file system sudo ./l4t_create_default_user.sh -u nvidia -p nvidia #Flash board again sudo ./flash.sh jetson-tx2 mmcblk0p1
The l4t_create_default_user.sh can be found at: https://devtalk.nvidia.com/default/topic/1054926/jetson-nano/jetson-nano-all-usb-ports-suddenly-stopped-working/post/5356153/#5356153
Or in here if you don't find the post: https://forums.developer.nvidia.com/t/jetson-nano-all-usb-ports-suddenly-stopped-working/75784/37
- Other related topics
https://devtalk.nvidia.com/default/topic/1061538/jetson-nano/how-to-skip-gui-system-setup-configuration/post/5375419/#5375419 (Another method, it hasn't been tested yet).
Lost connection issue while flashing OS using SDK Manager (Full JetPack installation)
Use this workaround:
- Unselect "Jetson OS" option in SDK manager, leave "Jetson SDK Components" selected.
- Flash OS using:
sudo ./flash.sh jetson-xavier mmcblk0p1
- When board boots up, finish installation via ubuntu GUI (user/password creation)
- Install SDK Components (CUDA, TensorRT, cuDNN, OpenCV, Visionworks, etc) using SDK manager, this requires entering board IP address and user/password created. This is because SDK components are installed via ssh.
Enabling the imx477 Camera Driver (JetPack >= 4.6)
Since JetPack 4.6, the imx477 Camera Driver comes bundled into the kernel. Running the following command from the device opens a CLI to help enable the driver:
sudo /opt/nvidia/jetson-io/jetson-io.py
In the first CLI menu, please select 'Configure Jetson Nano CSI Connector', as shown in the following image:
In the next menu, please select 'Configure for compatible hardware':
Then, please select 'Camera IMX477 Dual':
Then, please select 'Save pin changes':
Then, please select 'Save and reboot to reconfigure pins':
Finally, please press any key to reboot the device:
TX1/TX2
Xavier
GStreamer
Build from source
#!/bin/bash cd $HOME/ if [ $# -eq 0 ]; then echo "***No argument supplied***" echo "Usage:" echo "./jetson-build-gstreamer.sh <VERSION>" echo "Example:" echo "./jetson-build-gstreamer.sh 1.16.0" exit fi #Install dependencies sudo apt-get -y install build-essential dpkg-dev flex bison autotools-dev automake \ autopoint libtool gtk-doc-tools libgstreamer1.0-dev \ libxv-dev libasound2-dev libtheora-dev libogg-dev libvorbis-dev \ libbz2-dev libv4l-dev libvpx-dev libjack-jackd2-dev libsoup2.4-dev libpulse-dev \ faad libfaad-dev libgl1-mesa-dev libgles2-mesa-dev \ libx264-dev libmad0-dev liborc-0.4-dev liborc-0.4-0 liborc-0.4-0-dbg liborc-0.4-doc #The version you want to install is given as a command-line argument VERSION=$1 echo "Starting GStreamer Installation..." #Set an absolute path for building directory mkdir $HOME/gst_$VERSION cd $HOME/gst_$VERSION #Get the sources of the basic stuff (core, base, good, bad, ugly) wget https://gstreamer.freedesktop.org/src/gstreamer/gstreamer-$VERSION.tar.xz --no-check-certificate wget https://gstreamer.freedesktop.org/src/gst-plugins-base/gst-plugins-base-$VERSION.tar.xz --no-check-certificate wget https://gstreamer.freedesktop.org/src/gst-plugins-good/gst-plugins-good-$VERSION.tar.xz --no-check-certificate wget https://gstreamer.freedesktop.org/src/gst-plugins-bad/gst-plugins-bad-$VERSION.tar.xz --no-check-certificate wget https://gstreamer.freedesktop.org/src/gst-plugins-ugly/gst-plugins-ugly-$VERSION.tar.xz --no-check-certificate #Untar all for a in `ls -1 *.tar.*`; do tar -xf $a; done export PKG_CONFIG_PATH=$HOME/gst_$VERSION/out/lib/pkgconfig export PKG_CONFIG_PATH=$PKG_CONFIG_PATH:/usr/lib/aarch64-linux-gnu/pkgconfig export LD_LIBRARY_PATH=$HOME/gst_$VERSION/out/lib mkdir -p $HOME/gst_$VERSION/out #Gstreamer Core cd gstreamer-$VERSION ./configure --prefix=$HOME/gst_$VERSION/out; make; make install; cd .. #Gstreamer Base cd gst-plugins-base-$VERSION ./configure --prefix=$HOME/gst_$VERSION/out; make; make install; cd .. #Gstreamer Good cd gst-plugins-good-$VERSION ./configure --prefix=$HOME/gst_$VERSION/out; make; make install; cd .. #Gstreamer Bad cd gst-plugins-bad-$VERSION ./configure --prefix=$HOME/gst_$VERSION/out; make; make install; cd .. #Gstreamer Ugly cd gst-plugins-ugly-$VERSION ./configure --prefix=$HOME/gst_$VERSION/out; make; make install; cd .. export LD_LIBRARY_PATH=$HOME/gst_$VERSION/out/lib #Copy NVIDIA GStreamer libraries cd /usr/lib/aarch64-linux-gnu/gstreamer-1.0/ cp libgstnv* libgstomx.so $HOME/gst_$VERSION/out/lib/gstreamer-1.0/ gst-inspect-1.0 --version cd $HOME/
NVIDIA script (JetPack >= 4.2 )
Since JetPack 4.2 there is a script called gst-install: https://developer.nvidia.com/embedded/dlc/l4t-accelerated-gstreamer-guide-32-1.
Usage
Build
VERSION=1.14.4 INSTALL_PATH=/home/nvidia/gst-$VERSION mkdir $INSTALL_PATH sudo gst-install --prefix=$INSTALL_PATH --version=$VERSION
Install
export LD_LIBRARY_PATH=$INSTALL_PATH/lib/aarch64-linux-gnu export PATH=$INSTALL_PATH/bin:$PATH
JetPack Releases
Release | Platforms | L4T |
---|---|---|
4.2.2 | Nano, Xavier, TX2, TX1 | 32.2 |
4.2.1 | Nano, Xavier, TX2, TX1 | 32.2 |
4.2 | Nano, Xavier, TX2 | 32.1 |
4.1.1 | Nano, Xavier | 31.1 |
3.3 | TX2, TX1 | 28.2.1 (TX2)/ 28.2(TX1) |
Source: https://developer.nvidia.com/embedded/jetpack-archive
See also
RTOS support:
https://developer.nvidia.com/embedded/downloads#?search=spe
https://devtalk.nvidia.com/default/topic/1008974/jetson-tx2/is-there-any-real-time-os-for-jetson-/1
L4T Documentation:
https://docs.nvidia.com/jetson/archives/l4t-archived/l4t-322/index.html
For direct inquiries, please refer to the contact information available on our Contact page. Alternatively, you may complete and submit the form provided at the same link. We will respond to your request at our earliest opportunity.
Links to RidgeRun Resources and RidgeRun Artificial Intelligence Solutions can be found in the footer below.