Jump to content

NVIDIA CUDA Memory Management: Difference between revisions

m
no edit summary
mNo edit summary
mNo edit summary
 
Line 36: Line 36:
=== Coding example  ===
=== Coding example  ===
The following is a CUDA programming example using UM [https://devblogs.nvidia.com/unified-memory-cuda-beginners/]
The following is a CUDA programming example using UM [https://devblogs.nvidia.com/unified-memory-cuda-beginners/]
<syntaxhighlight lang="python">
{{NVIDIA CUDA Memory Management-Template2}}
#include <iostream>
#include <math.h>
// CUDA kernel to add elements of two arrays
__global__
void add(int n, float *x, float *y)
{
int index = blockIdx.x * blockDim.x + threadIdx.x;
int stride = blockDim.x * gridDim.x;
for (int i = index; i < n; i += stride)
  y[i] = x[i] + y[i];
}
int main(void)
{
int N = 1<<20;
float *x, *y;
// Allocate Unified Memory -- pointers accessible from CPU or GPU
cudaMallocManaged(&x, N*sizeof(float));
cudaMallocManaged(&y, N*sizeof(float));
// initialize x and y arrays on the host (CPU)
for (int i = 0; i < N; i++) {
  x[i] = 1.0f;
  y[i] = 2.0f;
}
// Launch kernel on 1M elements on the GPU
int blockSize = 256;
int numBlocks = (N + blockSize - 1) / blockSize;
add<<<numBlocks, blockSize>>>(N, x, y);
// Wait for GPU to finish before accessing on host**
cudaDeviceSynchronize();
// Check for errors (all values should be 3.0f)
float maxError = 0.0f;
for (int i = 0; i < N; i++)
  maxError = fmax(maxError, fabs(y[i]-3.0f));
std::cout << "Max error: " << maxError << std::endl;
// Free memory
cudaFree(x);
cudaFree(y);
return 0;
}
</syntaxhighlight>


==NVIDIA Jetson TX2==
==NVIDIA Jetson TX2==
Cookies help us deliver our services. By using our services, you agree to our use of cookies.