OmniVision OV5647 Linux driver for Jetson Nano

From RidgeRun Developer Wiki




Problems running the pipelines shown on this page? Please see our GStreamer Debugging guide for help.


Driver List Information
Refer to the RidgeRun Linux Camera Drivers to meet all the list of Drivers available


Omnivision OV5647 image sensor

The Omnivision OV5647 is a CMOS image sensor with the following features:

  • Automatic image control functions:
    • Automatic exposure control (AEC)
    • Automatic white balance (AWB)
    • Automatic band filter (ABF)
    • Automatic 50/60 Hz luminance detection
    • Automatic black level calibration (ABLC)
  • Image quality controls: lens correction, defective pixel canceling
  • CSI2 serial data output (MIPI interface 2 lanes)
  • Support for output formats: 8-/10-bit raw RGB data
  • Maximum image transfer rate:
    • QSXGA "Mpixel" (2592 x 1944): 15 fps
    • 1080p: 30 fps
    • 960p: 45 fps
    • 720p: 60 fps
    • VGA (640 x 480): 90 fps
    • QVGA (320 x 240): 120 fps

Enabling the Omnivision OV5647 Linux driver

Follow these instructions to build and install the kernel Image and device tree.

1. dependencies

2. Set the environment variables for the sources L4T 31-1-0

3. Install the toolchain

4. Download the kernel sources

JETSON_NANO_SOURCES=$(pwd)
wget https://developer.download.nvidia.com/embedded/L4T/r32_Release_v1.0/jetson-nano/BSP/Jetson-Nano-public_sources.tbz2 --no-check-certificate
tar -xvf Jetson-Nano-public_sources.tbz2 
cd public_sources/
tar -xvf kernel_src.tbz2

5. Apply driver patches

Before start building the kernel and dtb sources, apply the patch with OV5647 camera sources:

Copy the patches tarball into the sources directory, decompress the tarball and apply the patch with the commands:

mv 4.2_nano_ov5647.tar.gz $JETSON_NANO_SOURCES/public_sources
cd $JETSON_NANO_SOURCES/public_sources
tar -xvf 4.2_nano_ov5647.tar.gz
quilt push

6. Compile kernel and dtb

Follow the steps:

cd $JETSON_NANO_SOURCES/public_sources
CROSS_COMPILE=${HOME}/toolchain_bin_${VERSION}/${TOOLCHAIN_DIR}/bin/$CC_PREFIX
KERNEL_OUT=$JETSON_NANO_SOURCES/public_sources/build
KERNEL_MODULES_OUT=$JETSON_NANO_SOURCES/public_sources/modules
cd $JETSON_NANO_SOURCES/public_sources
make -C kernel/kernel-4.9/ ARCH=arm64 O=$KERNEL_OUT tegra_defconfig
make -C kernel/kernel-4.9/ ARCH=arm64 O=$KERNEL_OUT menuconfig
make -C kernel/kernel-4.9/ ARCH=arm64 O=$KERNEL_OUT CROSS_COMPILE=${CROSS_COMPILE} -j6 Image
make -C kernel/kernel-4.9/ ARCH=arm64 O=$KERNEL_OUT CROSS_COMPILE=${CROSS_COMPILE} -j6 dtbs
make -C kernel/kernel-4.9/ ARCH=arm64 O=$KERNEL_OUT CROSS_COMPILE=${CROSS_COMPILE} -j6 modules
make -C kernel/kernel-4.9/ ARCH=arm64 O=$KERNEL_OUT modules_install INSTALL_MOD_PATH=$KERNEL_MODULES_OUT

7. Flash Jetson Nano memory

This guide assumes that the user already have JetPack 4.2 installed. This link contains details about how to install JetPack 4.2: https://docs.nvidia.com/sdk-manager/download-run-sdkm/index.html

JETPACK_4_2 contains the directory where JetPack 4.2 was installed. Usually in.

~/nvidia/nvidia_sdk

So please do:

export JETPACK_4_2=$HOME/nvidia/nvidia_sdk/

Make sure the Jetson Nano is in recovery mode

cd ${JETPACK_4_2}/JetPack_4.2_Linux_P3448/Linux_for_Tegra 
# Copy kernel generated
cp $JETSON_NANO_SOURCES/public_sources/build/arch/arm64/boot/Image kernel/
# Copy device tree generated
cp $JETSON_NANO_SOURCES/public_sources/build/arch/arm64/boot/dts/tegra210-p3448-0000-p3449-0000-a02.dtb kernel/dtb/
# Copy new modules
sudo cp -a $JETSON_NANO_SOURCES/public_sources/modules/lib rootfs/
# Flash memory 
sudo ./flash.sh jetson-nano-qspi-sd mmcblk0p1

Using the OmniVision OV5647 Linux driver

Capture at 1080p@30fps

DISPLAY=:0 gst-launch-1.0 nvarguscamerasrc sensor-id=0 num-buffers=10000 ! \
'video/x-raw(memory:NVMM), width=(int)1920, height=(int)1080, format=(string)NV12, framerate=(fraction)21/1' ! \
nvvidconv ! queue ! ximagesink


For direct inquiries, please refer to the contact information available on our Contact page. Alternatively, you may complete and submit the form provided at the same link. We will respond to your request at our earliest opportunity.


Links to RidgeRun Resources and RidgeRun Artificial Intelligence Solutions can be found in the footer below.