Keras with MobilenetV2 for Deep Learning

From RidgeRun Developer Wiki



Introduction to Keras with MobilenetV2 for Deep Learning

This wiki is intended to give a quick and easy guide to create models using MobileNetV2 with Keras in Ubuntu 16.04 for PC. For better understanding an example using Transfer learning will be given .

Requirements

TensorFlow

Since Keras will be using TensorFlow backend.

pip3 install tensorflow
import tensorflow as tf
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
session = tf.Session(config=config)

Keras

Since Keras has already in its applications a pre-trained model of MobileNetV2 we need to install it by:

pip3 install Keras --user

The function to create the model has the following default parameters:

keras.applications.mobilenet_v2.MobileNetV2(input_shape=None, alpha=1.0, depth_multiplier=1, include_top=True, weights='imagenet', input_tensor=None, pooling=None, classes=1000)

which you can modify for your convenience.

Numpy, Scipy and Sklearn

pip3 install numpy
pip3 install scipy
pip3 install sklearn

Example transfer learning to the MobileNetV2

This example will apply transfer learning to the MobileNetV2 model in order to make it recognize new classes.

Configuring the session to avoid reserving all GPU memory

config = tf.ConfigProto()
config.gpu_options.allow_growth = True
session = tf.Session(config=config)

Creating the base model and add some extra layers to adjust to our model

base_model=MobileNetV2(weights='imagenet',include_top=False) #imports the MobileNetV2 model and discards the last 1000 neuron layer.
x=base_model.output
x=GlobalAveragePooling2D()(x)
x=Dense(1024,activation='relu')(x) #we add dense layers so that the model can learn more complex functions and classify for better results.
x=Dense(1024,activation='relu')(x) #dense layer 2
x=Dense(512,activation='relu')(x) #dense layer 3
preds=Dense($N,activation='softmax')(x) #final layer with softmax activation for N classes

model=Model(inputs=base_model.input,outputs=preds) #specify the inputs and outputs

Setting how many layers will be trained

for layer in model.layers[:20]:
    layer.trainable=False
for layer in model.layers[20:]:
    layer.trainable=True

Creating training and validation set

Note that in the $TRAINING_FOLDER should be the training data organized in folders with its corresponding class name just as shown in Figure 1.

Figure 1: Directory structure to create training, validation and test sets.
 #Training set
 train_datagen=ImageDataGenerator(preprocessing_function=preprocess_input)
 train_generator=train_datagen.flow_from_directory('$TRAINING_FOLDER/',
                                                target_size=(224,224),
                                                color_mode='rgb',
                                                batch_size=32,
                                                class_mode='categorical',
                                                shuffle=True)

This piece of code could be used also to create the validation and test sets.

Training the model

model.compile(optimizer='Adam',loss='categorical_crossentropy',metrics=['accuracy'])
step_size_train=train_generator.n//train_generator.batch_size
step_size_val=val_generator.n//val_generator.batch_size
model.fit_generator(generator=train_generator,
                  steps_per_epoch=step_size_train,
                  epochs=100, validation_data=val_generator,
                  validation_steps=step_size_val)

Saving the model

model_json = model.to_json()
with open("model.json", "w") as json_file:
    json_file.write(model_json)
    model.save_weights("weights.h5") # serialize weights to HDF5

Testing the model

To test the model a confusion matrix and a classification report is used. The metrics used for the report are recall, precision, and fscore.

Y_pred = model.predict_generator(test_generator, test_generator.n//test_generator.batch_size+1)
y_pred = np.argmax(Y_pred, axis=1)
confusion_matrix(test_generator.classes, y_pred)
target_names = ['00-Class', '01-Class', 'N-Class'] #classes names
classification_report(test_generator.classes, y_pred, target_names=target_names)

An output like the following could be shown:

Confusion Matrix
[[609   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0]
 [  0 343   0   0   0   0   0   0   0   0   0   0   0   0   4   0   0   0]
 [  0   0 536   0   0   0   0   0   0   0   0   0   0   0   1   0   0   0]
 [  0   0   0 527   4   0   3   6   0   0   0   2   0   0   0   0   0   3]
 [  0   0   0   0 135   0   0   0   0   0   0   0   0   0   0   0   0   0]
 [  0   1   0   0   0  94   0   0   0   0   0   0   0   0   0   0   0   0]
 [  0   0   0   1   0   0 199   0   0   0   0   0   0   0   0   0   0  37]
 [  0   0   0   0   0   0   0 435   6   0   0   0   0   0   0   0   0  28]
 [  0   0   0   0   0   0   0   2 523   0   0   0   0   0   0   0   0   0]
 [  0   0   0   0   0   0   0   0   0 503   2   0   0   0   0   0   0   8]
 [  0   0   0   0   0   0   0   0   0   0 522   0   0   0   0   0   0   1]
 [  2   0   0   0   0   0   0   0   0   0   0 469   0   0   0   0   0   0]
 [  0   0   0   4   0   0   0   2   0   0   0   2 369   0   2   0   0   4]
 [  0   0   0   0   0   0   0   0   0   0   0   4   0 537   0   0   0   0]
 [  0  10  20   0   0   0   0   0   0   0   0   0   0   0 514   6   0  33]
 [  0   0   0   0   0   0   0   0   0   0   0   0   0   0   0  55   0   0]
 [  0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0 219   0]
 [  0 174   0   4   0   0   0  17   1   0   0   0   0   6  17   0   0  47]]
Classification Report
              precision    recall  f1-score   support
  00-Gesture       1.00      1.00      1.00       609
  01-Gesture       0.65      0.99      0.78       347
  02-Gesture       0.96      1.00      0.98       537
  03-Gesture       0.98      0.97      0.98       545
  04-Gesture       0.97      1.00      0.99       135
  05-Gesture       1.00      0.99      0.99        95
  06-Gesture       0.99      0.84      0.91       237
  07-Gesture       0.94      0.93      0.93       469
  08-Gesture       0.99      1.00      0.99       525
  09-Gesture       1.00      0.98      0.99       513
  10-Gesture       1.00      1.00      1.00       523
  11-Gesture       0.98      1.00      0.99       471
  12-Gesture       1.00      0.96      0.98       383
  13-Gesture       0.99      0.99      0.99       541
  14-Gesture       0.96      0.88      0.92       583
  15-Gesture       0.90      1.00      0.95        55
  16-Gesture       1.00      1.00      1.00       219
  17-Gesture       0.29      0.18      0.22       266

   micro avg       0.94      0.94      0.94      7053
   macro avg       0.92      0.93      0.92      7053
weighted avg       0.94      0.94      0.94      7053

Complete script

MobileNetV2_Intranet_Script.py

See also

1. https://www.tensorflow.org/guide/using_gpu

2. https://keras.io/applications/#mobilenetv2

3. https://github.com/ferhat00/Deep-Learning/tree/master/Transfer%20Learning%20CNN



For direct inquiries, please refer to the contact information available on our Contact page. Alternatively, you may complete and submit the form provided at the same link. We will respond to your request at our earliest opportunity.


Links to RidgeRun Resources and RidgeRun Artificial Intelligence Solutions can be found in the footer below.